Digital Maker CIC

We make makers. ..

CircuitPython Build #2 for “Oor Monsters / Oor Future”
by Gabrielle Reith & Philip Thompson

For an overview of the Oor Monsters exhibition, see the Aberdeen Performing Arts website:
https://www.aberdeenperformingarts.com/whats-on/oor-monsters-oor-future

Overview 5

#HYesNo (“do you care?")

This installation used a Raspberry Pi “Pico” (“a low-cost, high-performance
microcontroller board with flexible digital interfaces.” ) 2x4 digit (7 segment)
led displays, and two “*home made” buttons (made with copper tape, wire, foam
sponge & wood). This was created to see (in a fun & very unscientific way) if
people cared about climate change issues or not, with a concious (tongue in
cheek) bias, as the “yes” button was far bigger than the “no”... we assumed
you’d have to be extra mean to hit the no button... We also 3d printed a
“Pico housing” to make consealing the pico inside the artwork neater, we have
uploaded the 3d file for that on our website too.

For more info on CircuitPython & specfic versions for a Pico, visit

Learn.adafruit.com/category/circuitpython

~arts

0.56" 7-segment LED HT16K33 Backpack

-

Raspberry Pi Pico 2xAdafruit 0.56” 4-Digit Copper Tape Electrical Wire
7-Segment Display

digital-maker.co.uk



Assempbly

Gabrielle & Philip used recycled / found wood from old furniture & offcuts to make the “Oor Monsters / oor
Future” exhibition. The “Do you care? monster” has 2 layers of 10mm ply (one with “tracks” routed into
the back of the ply for wiring / component placement with a holes cut for the buttons & LED displays). The
Pico had to be accessible from the bottom of the artwork (for ease of power supply). We made “Cutom
Buttons” by sandwiching 2 thin ply squares around a thin foam square (with a hole cut out the middle). We
followed the Instructables “Simple-Electronic-Button” how to by gitterbug23 with some tweaks, and glued
the “button shape” on top of the thin ply button. We also added in “common + & -" copper tape areas to
make wiring easier. Here is a step by step “build” we followed.

{54 g A
”"1;’}5‘. r

two thin ply squares with opper tape & We added the foam square (with hole cut ~ We sandwiched foam between the two we tested the press / contact & found that
soldered wire onto surface. We added so the contacts can be made!) sides of the button & taped them lightly solder alone oxidised over a few hours, so
a solder “bump” to the middle for extra with duct tape (not shown) we added in copper tape to the “lump” to

“contact opportunity” when pressed. ensure clean contacts per press.

Routed ply for components & wiring to sit in (Crocodile clips for
testing purposes) as the final wiring was “tight”. Phil used colour
coded wiring to ensure the red/blue LED display was affected by the
correct button (YES/NO).

Wiring diagram for the Pico + 2xButtons & 2x7SegLED Backpacks

Custom Button#2

]
Custom Button#l I

Common Ve+ Common GND-

GPL7?

GPL8

GP19

oo &%

?seg LED + HT1kK33 Backpack 1 ?seg LED + HTLLK33 Backpack 2

digital-maker.co.uk



Code

The LED “Backpacks” have a great Library that makes using them relitively straightforward. Just make sure
you have the SDA & SCL (D’ & 'C’ on the unit) in the right pins! We created two variables to keep track of
counters (C1 & C2) & each button press adds to the relevant counter. We also added in a small pause to
avoid any “bounces” (button presses too quickly)

1 import board
2 import busio
3 import digitalio
4 from adafruit_htl16k33.segments import Sepg7xd
5 import time
6
7 #5et up 2 buttons (+Ve and a "ground” that leads into a GP pin, "listening” for & pulse!)
8 bl = digitalio.DigitalInOut(board.GP14)
g bl.switch_to_input{pull=digitalio.Pull.DOWN)
18 b2 = digitalio.DigitalInOut(board.GP15)
11 b2.switch_to_input{pull=digitalio.Pull.DOWN)
12
13 # i2c on the backpack makes wiring easier & use fewsr wires!
14 # sdal = board.GP16 = #pin 21 & scll = board.GP17 = #pin 22
15 # sda? = board.GP1E = #pin 24 & scl? = board.GPlS = #pin 25
16 i2chA = busio.I2C{board.GP17, board.GP16)
17 i2cB = busio.I2C{board.GP19, board.GP18)
18
19 #create 2 displayObjects with the htl6k33 library for Seg7xd
26 displayl = Seg7xd(i2cA)
21 display2 = Seg7xd({i2cB)
22 #keep the display on the duller side, as they are wvery bright!
23 displayl.brightness = 8.1
24 display2.brightness = 8.1
25
26 #function to set the correct display unit's counter
27 def updateMNum(disp, count) -» MNone:
28 disp.fill(a)
29 disp.print{count)
3@
31 # start the counter variables at @
32 cl =8
33 c2 =@
34 ¥ blank the counter LEDs
35 updateMum{displayl, cl)
36 updateMum{display2, c2)
37
38 while True:
39 if bl.value:
48 cl +=1
41 # check to ses the number can be displayed on the 4 digit display!
42 if ¢l » 9999:
43 # if not set this counter to 1
44 cl=1
45 updateNum({displayl, cl1)
45 while bl.value:
a7 #pause for a little bit to stop multi touches being counted
48 time.sleep(@.1)
49
Lt if b2.value:
51 c? += 1
52 if c2 » 9999:
53 c2 =1
54 updateMum({display2, c2)
55 while b2.value:
56 time.sleep(®.1)

Download the code & files here: digital-maker.co.uk/wp-content/uploads/2023/04/yesNo.zip

digital-maker.co.uk



