
Making a Circular Bar in CircuitPython
with VectorIO naƟ ves.
Digital Maker (DM cic) have been using a Raspberry Pi Pico & CircuitPython as the base for an
explorative project, to see where it takes them (Martin & Phil).

So far, DM cic have wired up an OLEd screen (240 x 240 px), two buttons, a speaker, and now,
microphones (analogue fi rst, then a PDM mic).

Phil was interested in “visualising” the inputs (having just completed making the DinkyOSC to use in
conjunction with Sam Aaron’s Sonic PI). A ‘simple’ representation of the amplitude coming from the
mic was the fi rst goal. It was fairly easy to take the minimum & maximum of the mic & convert it to a
variable length “bar” or variable radius circle visualisation.

…Using a mapping tool :

Phil then thought a “circular bar” would be an exciting challenge, especially using native shapes in
CircuitPython’s “vectorio”. (Phil originally looked at the displayIO.circle / rect / line etc but lacked the
ability to change crucial “variable” properties quickly / on the fl y). So, the limited range of vectorio
shapes (circle, rectangle, polygon) were what he had to work with. Working on a black background,
Phil created a circular bar out of two circle (one coloured circle + a black inner circle, making what
looks like a thick line circle) as the base: (2nd diagram shows “fi xed points” we will work with.

diag_01 (bg / circe / mask circle) diag_02 (coordinates from centre)

Phil then thought to add a polygon to mask the visible circle, with a polygon that calculated how many
points it needed “on the fl y” (depending on the angle generated from the mapped value!)

First, Phil sketched out where the points would be needed on a polygon to account for the diff erent
angles (going on 0° being the “top” of the circle, 90° (right side), 180° (bottom), 270° (left)).

From this, we can see we need between 3 & 7 points in a polygon “mask”

To draw the polygon in vectorio he set some arrays with the “static points” and then later calculated
the fi nal variable point with some trigonometry. The mask should cover the circle, so the radius to
calculate the variable mask point, should be “beyond” the edge of the circle (with a radius of 120px). If
we take the extreme radius as the “corner” (of the square area the circle sits in), we can calculate that
the hypotenuse for that by knowing our “adjacent / opposite” sides are the circle’s radius (120) - and
the angle is 45° - the elegant formulae is hypotenuse = circleRadus (120) * √2 = 169.7

We can again use trigonometry to now work out an
x & y position of the “moving point” for the polygon
and add it to the “static points” stored in our handy
arrays.

To do this, we can use the “extreme radius” +
angle (converted from mic value). We also need
to convert everything into an int (integer (a whole
number)) as we can’t draw fractions of pixels!

xPos = int(math.cos(degree * (math.pi / 180)) *
 extremeRadius)

 yPos = int(math.sin(degree * (math.pi / 180)) *
 extremeRadius)

The new X&Y positions are “relative to 0” so if our circle is at 120,120 (the middle of the screen) we
should add the new X&Y to the “origin” e.g. (originX, originY) + (newX, newP) or neatly with tuple
concatenation: tuple(map(sum,zip(origin,newXY)))

Before we can add the new “variable point” we also need to fi gure out how many points we need in this
Polygon! So, there is an “if statement” we need to run through to check where the “degree” is & return
the relevant points list (starting from the centre of the circle). The great thing about vectorio polygons
is that the x/y position sets the 0,0 “origin”... so we need to move into negative & positive values for
the points. (“up” is -y , “down” is + y, “left” is -x and “right” is +x) (see Diag 02)

From diagram 03, we can see that there are 5 potential shapes, they change when the rotation passes
the 45 degree points after 0°, 90°, 180° & 270°. (45°, 135°, 225°, 315°) . There is a lovely way
of checking if a number is “inside” a range in python, we use the minimum, current value and the

6 Points
(between 45° & 135°)

Polygon
6 points

p1

p6

p3

p4 p5

p2

5 Points
(between 135° & 225°)

Polygon
5 points

p1

p3

p4 p5

p2

4 Points
(between 225° & 315°)

Polygon
4 points

p1

p3

p4

p2

3 Points
(between 315° & 360°)

Polygon
3 points

p1

p3 p2

7 Points
(between 0° & 45°)

Polygon
7 points

p1

p6p7p3

p4 p5

p2

Calculate Maximum Radius
(from 45° & Circle Radius of 120px)

Circle R = 120

diag_03 (potential polygon shapes (7 down to 3 points))

diag_04 (calculating the “maximum radius” for a polygon point)

maximum and use this syntax:

if minimum <= value <= maximum:
 #Conditions are true, so do something!

Logically, this is asking “is the minimum less than or equal to the value and the value is less than or
equal to the maximum”. So, we can apply this to our exploration of the angle value & compile the list
of points needed for the polygon mask.

Now that we can create a polygon’s points “on the fl y” we can then change the vectorio polygon
“points” parameter & the shape automatically re-draws (unlike displayio.polygon where you’d have to
delete the shape, re-make the shape with the new points & re-attach the polygon to the screen objects
to draw!)

polyMask = Polygon(pixel_shader=black, points=checkAngle(angle), x=0, y=0)

Once the polygon mask has been created, we can update the points with : polyMask.points =
checkAngle(angle)(this is the beauty of using vectorio shapes!)

When Phil tested this, it worked, and did what was expected (!) but it was pretty slow. The
“complexity” was too much for the polygon to draw a full screen “mask” (0-45 degrees, 7 points
really did slow down, and with testing, phil could see the 0-135 degree polygons were a lot slower to
calculate & draw than the other possible shapes).

diag_05 (Python functions to calculate a new (x,y) location from a radius & angle and what points array needed for the polygon)

Square
Mask 1

Square
Mask 2

Square
Mask 3

Polygon
Mask
(3 or 4 points)

So! Phil had one of those classic “light bulb moments” at night, just before dropping off to sleep...
“Why don’t I use simpler shapes and calculate the smaller ‘odd’ polygon!” He thought. Phil decided to
cerate a possible “masks” made of 3 squares (one for each corner from 90 - 360 degrees), and a small
3 or 4 pointed polygon to fi ll the “corner” where the variable point is... like so (Diag 06):

And we now only have to calculate & draw a
small “variable” area + up to 3 quick squares
Again, we can use an if statement to see if
the polygon needs 3 or 4 points, and then
draw 1, 2 or 3 squares in the areas “fully
masked”.

Phil created the “CircleBar” as a python
Object (OOP) - so all the calculations are
contained in the Class , and you can create
circular bars by making an object like this:

c1 = CircleBar(50, 1.1, 50, 50, rgb2hex(255,
0, 0), screen)

(Passing: radius, innerRadiusFactor, x
position, y position, colour & the global screen
to draw to)

if you visit : bit.ly/3D6u59f you can download the example in a zip fi le of the library & code.py which
creates 4 circleBar objects & a counter to generate an angle to change the objects appearance.

Enjoy! If you do fi nd a use for this, let us know, if you can help hone the code, please do!

Thanks for Reading,

yours, Phil Thompson (Digital Maker CIC lead tutor)

diag_06 (3 Square masks + one 3 or 4 pointed Polygon)

