Pico Project Week three
Inputting sound

Following on from last week where we had built our own loudspeaker that played different sounds
depending on which button was pressed. Our thought turned to how could we input sound into
the Pico. An obvious choice is some form of microphone

Microphone and ADC

We chose a low cost microphone with an inbuilt amplifier, the amplifier is needed to boost the tiny
voltages produced by the microphone

A microphone produces an analogue signal whereas the Pico needs a digital signal to work with.
The RP2040 processor has four ‘analogue to digital’ converters, three of which are available on
the Pico. An analogue to digital converter, ADC, converts the analogue signal to a digital signal
that can be read by the Pico. The Pico ADC’s are 12 bit, returns a value between 0 and 4095.
However CircuitPython is written to work across a number of devices and returns a 16 bit value, 0
- 65535. We used GPIO 26 (GP26_A0 in CircuitPython)

Wiring
Out — GP26_A0)

VCC — 3.3V
GND — Ground




Coding

import terminalio

from vectorio import Rectangle, Circle
from adafruit_display_text import label
from adafruit_display_shapes import circle
from adafruit_st7789 import ST7789
adafruit_imageload
digitalio, analogio

time,

spi = busio.SPI(board.GP1@, board.GP11)

display_bus = displayio.FourWire(spi, command=tft_dc,

chip_select=tft_cs, reset=board.GP18)

display = ST7789(display_bus,
width=240,
height=240,
rowstart=80,

auto_refresh=

screen = displayio.Group()




circle = Circle(pixel_shader=palette, radius=25, x=120, y=120)
screen.append(circle)

display.show(screen)

buttonOne = digitalio.DigitalInOut(board.GP13)

buttonOne.switch_to_input(pull=digitalio.Pull.DOWN)
buttonTwo = digitalio.DigitalInOut(board.GP14)
buttonTwo.switch_to_input(pull=digitalio.Pull.DOWN)

get_voltage(raw):
return (raw x 3.3) / 65536.0

mapFromTo(v, oldMin, oldMax, newMin, newMax):

newV=(v—-o0ldMin)/(oldMax—oldMin)*(newMax—newMin)+newMin

return newV

average(lst):
return sum(lst) / len(lst)

mic.value
100

=[]
10000

micArray.append(amp)

if len(micArray) > 2:

micArray.pop(0)




if amp <= lowest:
lowest = amp

if amp >= highest:
highest = amp

if (oldAmp - buffer) <= amp <= (oldAmp + buffer):

circle.radius = convertedRad

oldAmp = amp

convertedRad = int(mapFromTo(average(micArray), lowest, highest-1, 2,

circle.radius = convertedRad

Conclusion

We set out what we wanted to do, connecting a microphone to the Pico, we realised however that
we wanted some way to split the frequencies up and display separately, a bit like a spectrum
analyser. It’s a reasonably straight forward task using ‘C’ but not at the present time in
CircuitPython. We started to look for a solution and what we found will be the basis for next
weeks instalment.



