
Pico Project Week three

Inputting sound

Following on from last week where we had built our own loudspeaker that played different sounds
depending on which button was pressed. Our thought turned to how could we input sound into
the Pico. An obvious choice is some form of microphone

Microphone and ADC

We chose a low cost microphone with an inbuilt amplifier, the amplifier is needed to boost the tiny
voltages produced by the microphone

A microphone produces an analogue signal whereas the Pico needs a digital signal to work with.
The RP2040 processor has four ‘analogue to digital’ converters, three of which are available on
the Pico. An analogue to digital converter, ADC, converts the analogue signal to a digital signal
that can be read by the Pico. The Pico ADC’s are 12 bit, returns a value between 0 and 4095.
However CircuitPython is written to work across a number of devices and returns a 16 bit value, 0
- 65535. We used GPIO 26 (GP26_A0 in CircuitPython)

Wiring

Out — GP26_A0)

VCC — 3.3V

GND — Ground

Coding

import board

import terminalio

import busio

import displayio

from vectorio import Rectangle, Circle

from adafruit_display_text import label

from adafruit_display_shapes import circle

from adafruit_st7789 import ST7789

import adafruit_imageload

import digitalio, analogio

import time, random

import audiomp3

import audiopwmio

mic = analogio.AnalogIn(board.GP26_A0)

Release any resources currently in use for the displays

displayio.release_displays()

SPI pins for display st7789

tft_cs = board.GP17

tft_dc = board.GP16

setup spi bus

spi = busio.SPI(board.GP10, board.GP11)

setup display

display_bus = displayio.FourWire(spi, command=tft_dc,

 chip_select=tft_cs, reset=board.GP18)

display = ST7789(display_bus,

 width=240,

 height=240,

 rowstart=80,

 auto_refresh=True)

Make the display context

screen = displayio.Group()

palette = displayio.Palette(1)

palette[0] = 0x125690

circle = Circle(pixel_shader=palette, radius=25, x=120, y=120)

screen.append(circle)

display.show(screen)

buttonOne = digitalio.DigitalInOut(board.GP13)

buttonOne.switch_to_input(pull=digitalio.Pull.DOWN)

buttonTwo = digitalio.DigitalInOut(board.GP14)

buttonTwo.switch_to_input(pull=digitalio.Pull.DOWN)

def get_voltage(raw):

 return (raw * 3.3) / 65536.0

def mapFromTo(v, oldMin, oldMax, newMin, newMax):

 newV=(v-oldMin)/(oldMax-oldMin)*(newMax-newMin)+newMin

 return newV

def average(lst):

 return sum(lst) / len(lst)

oldAmp = mic.value # holder of "old mic value" (so we can compare each loop)

buffer = 100 # a buffer to check between a range (old value - buffer |

new value | old value + buffer)

micArray = [] # keep an array of values so we can "smooth" an average ?

lowest = 10000 # set a high value for the lowest value (so we can

eventually whittle it down to the minimum value the mic spits out)

highest = 1 # set a low value for the maximum value (so we can build it

up to find the highest raw mic value)

while True:

 #get the mic value

 amp = mic.value

 #add the mic value to the micArray list

 micArray.append(amp)

 # if the micArray is larger than 10 items, pop the 1st item out

 if len(micArray) > 2:

 micArray.pop(0)

 # if the mic values are lower or higher than the previous min / max vlues -

change them accordingly (so we can get a true min/max range)

 if amp <= lowest:

 lowest = amp

 if amp >= highest:

 highest = amp

 # check to see if the new amp value is between the acceptable range of "no

change"

 if (oldAmp - buffer) <= amp <= (oldAmp + buffer):

 #print("no change, setting to convertedRad radius")

 circle.radius = convertedRad

 oldAmp = amp

 else:

 convertedRad = int(mapFromTo(average(micArray), lowest, highest-1, 2,

100))

 circle.radius = convertedRad

 #print("amp = {} & oldAmp = {} low = {} hi = {} av = {}".format(

 # amp, oldAmp, lowest, highest, average(micArray)))

Conclusion

We set out what we wanted to do, connecting a microphone to the Pico, we realised however that
we wanted some way to split the frequencies up and display separately, a bit like a spectrum
analyser. It’s a reasonably straight forward task using ‘C’ but not at the present time in
CircuitPython. We started to look for a solution and what we found will be the basis for next
weeks instalment.

